China high quality Top 10 Full Silence Air Oil Compressors 7 Bar 10bar 15 Bar 16bar 30bar Electric Industrial Screw Air Compressor China on Sale arb air compressor

Product Description

 OFAC oil-free screw air compressor used Japanese Mitsui’s original technology, who is the only maintenance service provider in China.

 

TECHNICAL DATA
 
Model Power Pressure (bar) Air Flow (m3/min) Noise Level dBA Outlet Size Weight (kgs) Lubricating Water(L) Filter Element (B)-(Z) Dimension LxWxH (mm)
OF-7.5F 7.5kw 10hp 8 1.0 60 RP 3/4 400 22 (25cm) 1 1000*720*1050
OF-11F 11kw 15hp 8 1.6 63 460 1156*845*1250
OF-15F 15kw 20hp 8 2.5 65 RP 1 620 28 (50cm) 1 1306*945*1260
OF-18F 18.5kw 25hp 8 3.0 67 750 33 1520*1060*1390
OF-22F 22kw 30hp 8 3.6 68 840 33 1520*1060*1390
OF-30F 30kw 40hp 8 5.0 69 RP 11/4 1050 66 (25cm) 5 1760*1160*1490
OF-37F 37kw 50hp 8 6.2 71 1100 1760*1160*1490
OF-45S 45kw 60hp 8 7.3 74 RP 11/2 1050 88 1760*1160*1490
OF-45F 45kw 60hp 8 7.3 74 1200 1760*1160*1490
OF-55S 55kw 75hp 8 10 74 RP 2 1250 110 (50cm) 5 1900*1250*1361
OF-55F 55kw 75hp 8 10 74 2200 (50cm) 7 2350*1250*1880
OF-75S 75kw 100hp 8 13 75 1650 (50cm) 5 1900*1250*1361
OF-75F 75kw 100hp 8 13 75 2500 (50cm) 7 2550*1620*1880
OF-90S 90kw 125hp 8 15 76 2050 (50cm) 5 1900*1250*1361
OF-90F 90kw 125hp 8 15 76 2650 (50cm) 7 2550*1620*1880
OF-110S 110kw 150hp 8 20 78 DN 65 2550 130 (50cm) 12 2200*1600*1735
OF-110F 110kw 150hp 8 20 78 3500 130 3000*1700*2250
OF-132S 132kw 175hp 8 23 80 2700 130 2200*1600*2250
OF-160S 160kw 220hp 8 26 82 2900 165 2200*1600*2250
OF-185S 185kw 250hp 8 30 83 DN 100 3300 180 (50cm) 22 2860*1800*1945
OF-200S 200kw 270hp 8 33 83 3500 2860*1800*1945
OF-220S 220kw 300hp 8 36 85 4500 2860*2000*2300
OF-250S 250kw 340hp 8 40 85 4700 2860*2000*2300
OF-315S 315kw 480hp 8 50 90 5000 2860*2000*2300

 F– air cooling method     S– water cooling method

                           
The brand “OFAC, OFC” specializes in the R&D, manufacturing, sales and service of compressors, oil-free compressors and air end, special gas compressors, various air compressors and post-processing equipment, providing customers with High-quality, environmentally friendly and efficient air system solutions and fast and stable technical services.

FAQ

Q1: Warranty terms of your machine?
A1: Two year warranty for the machine and technical support according to your needs.

Q2: Will you provide some spare parts of the machines?
A2: Yes, of course.

Q3: What about product package?
A3: We pack our products strictly with standard seaworthy case. Rcommend wooden box.

Q4: Can you use our brand?
A4: Yes, OEM is available.

Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products. 380V 50HZ we can delivery the goods within 3-15 days. Other  voltage or other color we will delivery within 30-45 days.

Q6: How Many Staff Are There In your Factory?
A6: About 100.
 
Q7: What’s your factory’s production capacity?
A7: About 550-650 units per month.

Q8: What the exactly address of your factory?
A8: Our first workshop located in HangZhou, ZheJiang , second workshop located in HangZhou, ZheJiang ,  China.

 

After-sales Service: 2 Years
Warranty: 2 Years
Lubrication Style: Oil-free
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What role do air dryers play in compressed air systems?

Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:

1. Moisture Removal:

Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.

2. Contaminant Removal:

In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.

3. Protection of Equipment and Processes:

By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.

4. Improved Productivity and Efficiency:

Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.

5. Compliance with Standards and Specifications:

Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.

By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

What is the impact of tank size on air compressor performance?

The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:

1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.

2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.

3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.

4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.

5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.

It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.

Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.

China high quality Top 10 Full Silence Air Oil Compressors 7 Bar 10bar 15 Bar 16bar 30bar Electric Industrial Screw Air Compressor China on Sale   arb air compressorChina high quality Top 10 Full Silence Air Oil Compressors 7 Bar 10bar 15 Bar 16bar 30bar Electric Industrial Screw Air Compressor China on Sale   arb air compressor
editor by CX 2023-11-02