Tag Archives: natural gas compressor

China OEM Industrial Air-Cooled Water-Cooled Natural Gas Reciprocating Compressor air compressor price

Product Description

Detailed Photos

High Purity Explosion-Proof Methane Natural Gas Booster Compressor

Description&Advantages

Product Descriptions:
Mainly used for boosting and transporting natural gas into the pipeline network (natural gas extraction from pipelines, recovery and cHangZhou of combustible gases). It can also be used for stirring in the pharmaceutical and brewing industries, pressurized gas transportation in the chemical industry, blow molding for bottle production in the food industry, and dust removal from parts in machinery manufacturing

Advantages:
Our products, incorporating technology from Austria’s LMF and Germany’s CHINAMFG Demag companies, exhibit high reliability. Wearable parts like gas valves and piston rings use products from Austria’s Hoerbiger company, with a lifespan exceeding 8000 hours. The system supports soft starting, allowing frequent start and stop cycles for the compressor.  It features a wide intake range for broad adaptability. The overall skid-mounted structure results in low noise and is easy to install in urban areas, leading to investment savings.
It is equipped with a CHINAMFG PLC control system for high automation, ABB soft start (or variable frequency), and features automatic shutdown with audible and visual alarms in case of faults

Product Parameters

Model Flow
m3/h
Inlet Pressure
(Mpa)
Outlet Pressure (Mpa) Weight(Kg) Power(Kw)
VW-6/16-24 360 1.6 2.4 2600 110
VW-6/(0-1.62)-(5-21) 360 0-0.162 0.5-2.1 2350 75
WW-26.7/0.5-10 1602 0.05 1 4500 250
DW-2/0.2-16 120 0.02 1.6 1500 22
WW-3/8 180 normal pressure 0.8 1500 22
2VW-50/3.5 3000 normal pressure 0.35 6000 220
2VW-16.7/0.5-20 1002 0.05 2 6500 185
ZW-0.6/6-10 36 0.6 1 760 5.5
ZW-0.8/12 48 normal pressure 1.2 1200 7.5
DW-9.5/7 570 normal pressure 0.7 2600 55
VW-4.5/0.5-10 270 0.05 1 2100 37
2VW-25/25 1500 normal pressure 2.5 2100 250
2VW-50/3.5 3000 normal pressure 0.35 6000 220
DW-4.5/0.5-13 270 0.05 1.3 2500 18.5
ZW-0.46/(5-10)-(15-20) 27.6 0.5-1.0 1.5-2.0 850 11
VW-5.6/(1.5-2)-25 336 0.15-0.2 2.5 2000 55
V-6.5/(1-3)-7 390 0.1-0.3 0.7 1900 37
WW-2.5/3-250 150 0.3 25 3500 110

Our Factory

 

Part of Customer Visit

 

Certifications & Testing

 

Related Product

 

FAQ

Q:Are you a factory?

A:Yes, we are indeed a factory. We specialize in manufacturing high-quality Air/Gas Compressors and are proud to be a primary source for these products.

Q:How long is your delivery time?
A:It varies depending on the specific situation. For our standard configuration compressors, the delivery time is around 30 days. For customized compressors, it usually takes about 30-45 days.

Q:What technical support do you offer?
A:We offer comprehensive technical support to our clients, including remote assistance for installation and commissioning processes. Additionally, we have a team of seasoned engineers ready to be deployed to international client locations for meticulous on-site debugging, installation, and post-installation services.

Q:What is your warranty period?
A:Our warranty policy is valid for a period of 18 months from the date of commissioning at the end customer’s site or 21 months from the date of receipt by the purchaser, whichever comes first. This comprehensive coverage is designed to ensure total customer satisfaction and the reliability of our products

Q:How do you package the compressors?
A:For smaller compressors, we utilize robust plywood boxes that conform to export specifications.
    For the larger units, we strategically place them in freight containers, implementing secure fastening methods to safeguard            against any potential damage during the shipping process.

Q:What are your payment terms?
A:Usually, the payment is made by T/T with a 30% down payment CHINAMFG confirmation of the Proforma Invoice (PI), and the balance is to be paid after inspection and before shipment. We accept both TT and L/C at sight.

Send message  Get product Offer & Brochure!!!

 ↓↓↓

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Local Teams
Warranty: 18 Months
Principle: Reciprocating Compressor
Application: Back Pressure Type, Intermediate Back Pressure Type, High Back Pressure Type, Low Back Pressure Type
Performance: Low Noise, Variable Frequency, Explosion-Proof
Mute: Mute
Samples:
US$ 40000/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What is the role of air compressors in power generation?

Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:

1. Combustion Air Supply:

Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.

2. Instrumentation and Control:

Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.

3. Cooling and Ventilation:

In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.

4. Cleaning and Maintenance:

Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.

5. Pneumatic Tools and Equipment:

In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.

6. Nitrogen Generation:

Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.

7. Start-up and Emergency Systems:

Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.

Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.

air compressor

How are air compressors utilized in pneumatic tools?

Air compressors play a crucial role in powering and operating pneumatic tools. Here’s a detailed explanation of how air compressors are utilized in pneumatic tools:

Power Source:

Pneumatic tools rely on compressed air as their power source. The air compressor generates and stores compressed air, which is then delivered to the pneumatic tool through a hose or piping system. The compressed air provides the force necessary for the tool to perform various tasks.

Air Pressure Regulation:

Air compressors are equipped with pressure regulation systems to control the output pressure of the compressed air. Different pneumatic tools require different air pressure levels to operate optimally. The air compressor’s pressure regulator allows users to adjust the output pressure according to the specific requirements of the pneumatic tool being used.

Air Volume and Flow:

Air compressors provide a continuous supply of compressed air, ensuring a consistent air volume and flow rate for pneumatic tools. The air volume is typically measured in cubic feet per minute (CFM) and determines the tool’s performance capabilities. Higher CFM ratings indicate that the pneumatic tool can deliver more power and operate at a faster rate.

Tool Actuation:

Pneumatic tools utilize compressed air to actuate their mechanical components. For example, an air-powered impact wrench uses compressed air to drive the tool’s internal hammer mechanism, generating high torque for fastening or loosening bolts and nuts. Similarly, air-powered drills, sanders, nail guns, and spray guns rely on compressed air to power their respective operations.

Versatility:

One of the significant advantages of pneumatic tools is their versatility, and air compressors enable this flexibility. A single air compressor can power a wide range of pneumatic tools, eliminating the need for separate power sources for each tool. This makes pneumatic tools a popular choice in various industries, such as automotive, construction, manufacturing, and woodworking.

Portability:

Air compressors come in different sizes and configurations, offering varying degrees of portability. Smaller portable air compressors are commonly used in applications where mobility is essential, such as construction sites or remote locations. The portability of air compressors allows pneumatic tools to be used in various work environments without the constraints of being tethered to a fixed power source.

Overall, air compressors are integral to the functionality and operation of pneumatic tools. They provide the necessary power, air pressure regulation, and continuous airflow required for pneumatic tools to perform a wide range of tasks efficiently and effectively.

air compressor

What are the key components of an air compressor system?

An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:

1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.

2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.

3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.

4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.

6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.

7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.

8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.

9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.

10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.

These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.

China OEM Industrial Air-Cooled Water-Cooled Natural Gas Reciprocating Compressor   air compressor priceChina OEM Industrial Air-Cooled Water-Cooled Natural Gas Reciprocating Compressor   air compressor price
editor by CX 2024-04-26

China Standard High Accuracy Output LPG Fuel Chlorine Natural Gas Flow Meter Air Compressor Steam Air Vortex Flowmeter Price Manufacturer best air compressor

Product Description

Detailed Photos

High Accuracy Output LPG Fuel Chlorine Natural Gas Flow Meter Air Compressor Steam Air Vortex Flowmeter Price Manufacturer

Description&Advantages

Product Descriptions:
Mainly used for boosting and transporting natural gas into the pipeline network (natural gas extraction from pipelines, recovery and cHangZhou of combustible gases). It can also be used for stirring in the pharmaceutical and brewing industries, pressurized gas transportation in the chemical industry, blow molding for bottle production in the food industry, and dust removal from parts in machinery manufacturing

Advantages:
Our products, incorporating technology from Austria’s LMF and Germany’s CHINAMFG Demag companies, exhibit high reliability. Wearable parts like gas valves and piston rings use products from Austria’s Hoerbiger company, with a lifespan exceeding 8000 hours. The system supports soft starting, allowing frequent start and stop cycles for the compressor.  It features a wide intake range for broad adaptability. The overall skid-mounted structure results in low noise and is easy to install in urban areas, leading to investment savings.
It is equipped with a CHINAMFG PLC control system for high automation, ABB soft start (or variable frequency), and features automatic shutdown with audible and visual alarms in case of faults

Product Parameters

Model Flow
m3/h
Inlet Pressure
(Mpa)
Outlet Pressure (Mpa) Weight(Kg) Power(Kw)
VW-6/16-24 360 1.6 2.4 2600 110
VW-6/(0-1.62)-(5-21) 360 0-0.162 0.5-2.1 2350 75
WW-26.7/0.5-10 1602 0.05 1 4500 250
DW-2/0.2-16 120 0.02 1.6 1500 22
WW-3/8 180 normal pressure 0.8 1500 22
2VW-50/3.5 3000 normal pressure 0.35 6000 220
2VW-16.7/0.5-20 1002 0.05 2 6500 185
ZW-0.6/6-10 36 0.6 1 760 5.5
ZW-0.8/12 48 normal pressure 1.2 1200 7.5
DW-9.5/7 570 normal pressure 0.7 2600 55
VW-4.5/0.5-10 270 0.05 1 2100 37
2VW-25/25 1500 normal pressure 2.5 2100 250
2VW-50/3.5 3000 normal pressure 0.35 6000 220
DW-4.5/0.5-13 270 0.05 1.3 2500 18.5
ZW-0.46/(5-10)-(15-20) 27.6 0.5-1.0 1.5-2.0 850 11
VW-5.6/(1.5-2)-25 336 0.15-0.2 2.5 2000 55
V-6.5/(1-3)-7 390 0.1-0.3 0.7 1900 37
WW-2.5/3-250 150 0.3 25 3500 110

Our Factory

 

Part of Customer Visit

 

Certifications & Testing

 

Related Product

 

FAQ

Q:Are you a factory?

A:Yes, we are indeed a factory. We specialize in manufacturing high-quality Air/Gas Compressors and are proud to be a primary source for these products.

Q:How long is your delivery time?
A:It varies depending on the specific situation. For our standard configuration compressors, the delivery time is around 30 days. For customized compressors, it usually takes about 30-45 days.

Q:What technical support do you offer?
A:We offer comprehensive technical support to our clients, including remote assistance for installation and commissioning processes. Additionally, we have a team of seasoned engineers ready to be deployed to international client locations for meticulous on-site debugging, installation, and post-installation services.

Q:What is your warranty period?
A:Our warranty policy is valid for a period of 18 months from the date of commissioning at the end customer’s site or 21 months from the date of receipt by the purchaser, whichever comes first. This comprehensive coverage is designed to ensure total customer satisfaction and the reliability of our products

Q:How do you package the compressors?
A:For smaller compressors, we utilize robust plywood boxes that conform to export specifications.
    For the larger units, we strategically place them in freight containers, implementing secure fastening methods to safeguard            against any potential damage during the shipping process.

Q:What are your payment terms?
A:Usually, the payment is made by T/T with a 30% down payment CHINAMFG confirmation of the Proforma Invoice (PI), and the balance is to be paid after inspection and before shipment. We accept both TT and L/C at sight.

Send message  Get product Offer & Brochure!!!

 ↓↓↓

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Local Teams
Warranty: 18 Months
Lubrication Style: Oil-free
Cooling System: Air Cooling/Water Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Customized
Samples:
US$ 40000/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What is the impact of humidity on compressed air quality?

Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:

1. Corrosion:

High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.

2. Contaminant Carryover:

Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.

3. Decreased Efficiency of Pneumatic Systems:

Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.

4. Product Contamination:

In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.

5. Increased Maintenance Requirements:

Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.

6. Adverse Effects on Instrumentation:

Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.

To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

In which industries are air compressors widely used?

Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:

1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.

2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.

3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.

4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.

5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.

6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.

7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.

8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.

9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.

These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.

China Standard High Accuracy Output LPG Fuel Chlorine Natural Gas Flow Meter Air Compressor Steam Air Vortex Flowmeter Price Manufacturer   best air compressorChina Standard High Accuracy Output LPG Fuel Chlorine Natural Gas Flow Meter Air Compressor Steam Air Vortex Flowmeter Price Manufacturer   best air compressor
editor by CX 2024-02-05

China high quality Customized Reciprocating Piston Oil-Less/Oil-Free Natural Gas Compressor High Pressure Air Compressor, Special Gas Compressors Such as Hydrogen/Nitrogen/Bog. with Great quality

Product Description

Detailed Photos

Customized Reciprocating Piston Oil-Less/Oil-Free Natural Gas Compressor High Pressure
Air Compressor, Special Gas Compressors Such as Hydrogen/Nitrogen/Bog.

Description&Advantages

Product Descriptions:

The gas station, which takes natural gas input through pipelines, increases the pressure on-site and then either directly fills or stores the gas in fixed storage cylinder groups (wells) for refueling CNG vehicles with CNG. The process system consists of a pressure regulation and metering device, desulfurization and dehydration equipment, a natural gas compressor, CNG storage facilities, a sequential control device, CNG refueling facilities, safety protection devices for refueling process equipment, electrical devices, CNG pipelines and components, etc

Advantages:
Our products, incorporating technology from Austria’s LMF and Germany’s CHINAMFG Demag companies, exhibit high reliability. Wearable parts like gas valves and piston rings use products from Austria’s Hoerbiger company, with a lifespan exceeding 8000 hours. The system supports soft starting, allowing frequent start and stop cycles for the compressor.  It features a wide intake range for broad adaptability. The overall skid-mounted structure results in low noise and is easy to install in urban areas, leading to investment savings.
It is equipped with a CHINAMFG PLC control system for high automation, ABB soft start (or variable frequency), and features automatic shutdown with audible and visual alarms in case of faults

Product Parameters

 

Model Inlet Pressure
(Mpa)
Outlet Pressure
(Mpa)
Capacity
(Nm3/h)
Power
(Kw)
Remarks
ZF-0.16/6-250 0.6 25 68 22  
VF-2.4/8-250 0.8 25 1300 220  
VF-0.76/10-250 1.0 25 500 Q6135DR1  
VF-2.2/10-250 1.0 25 1452 220-8  
VF-3.2/(2.5-4)-250 0.25-0.4 25 670-1000 270  
VF-2/(10-16)-250 1.0-1.6 25 1320-2000 280  
VF-2.5/3-210 0.3 21 600 132  
VF-0.11/(70-200)-250 7-20 25 468-1326 30  
VF-2.5/(0.8-1.6)-250 0.08-0.16 25 270-390 90  
VF-2/(2-3)-250 0.2-0.3 25 360-480 110  
VF-1.1/(5-6)-250 0.5-0.6 25 396-462 90  
VF-0.54/30-250 3.0 25 1004 110  
VF-0.8/30-250 3.0 25 1488 160  
VF-0.28/(40-80)-250 4.0-8.0 25 688-1360 90  
VFD-0.36/(20-200)-250 2.0-20 25 680-2210 110 Soundproof Cabin
VFD-0.32/(20-200)-250 2.0-20 25 600-1700 90 Soundproof Cabin
VFD-0.28/(20-200)-250 2.0-20 25 525-1430 75 Soundproof Cabin
VFD-0.16/(20-200)-250 2.0-20 25 600 55 Soundproof Cabin
Note: This series of CNG refueling station compressors can be customized with the following parameters: Pressure: 0.2-20Mpa, Flow rate: 400-1200 Nm³/h.

Our Factory

 

Part of Customer Visit

 

Certifications & Testing

 

Related Product

 

FAQ

Q:Are you a factory?

A:Yes, we are indeed a factory. We specialize in manufacturing high-quality Air/Gas Compressors and are proud to be a primary source for these products.

Q:How long is your delivery time?
A:It varies depending on the specific situation. For our standard configuration compressors, the delivery time is around 30 days. For customized compressors, it usually takes about 30-45 days.

Q:What technical support do you offer?
A:We offer comprehensive technical support to our clients, including remote assistance for installation and commissioning processes. Additionally, we have a team of seasoned engineers ready to be deployed to international client locations for meticulous on-site debugging, installation, and post-installation services.

Q:What is your warranty period?
A:Our warranty policy is valid for a period of 18 months from the date of commissioning at the end customer’s site or 21 months from the date of receipt by the purchaser, whichever comes first. This comprehensive coverage is designed to ensure total customer satisfaction and the reliability of our products

Q:How do you package the compressors?
A:For smaller compressors, we utilize robust plywood boxes that conform to export specifications.
    For the larger units, we strategically place them in freight containers, implementing secure fastening methods to safeguard            against any potential damage during the shipping process.

Q:What are your payment terms?
A:Usually, the payment is made by T/T with a 30% down payment CHINAMFG confirmation of the Proforma Invoice (PI), and the balance is to be paid after inspection and before shipment. We accept both TT and L/C at sight.

Send message  Get product Offer & Brochure!!!

 ↓↓↓

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Local Teams
Warranty: 18 Mouths
Principle: Reciprocating Compressor
Application: Back Pressure Type, Intermediate Back Pressure Type, High Back Pressure Type, Low Back Pressure Type
Performance: Low Noise, Variable Frequency, Explosion-Proof
Mute: Mute
Samples:
US$ 40000/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What Is the Role of Water Separators in Water-Lubricated Compressors?

In water-lubricated compressors, water separators play a crucial role in maintaining the integrity and performance of the compressed air system. Here’s a detailed explanation of their role:

Water separators, also known as moisture separators or condensate separators, are components within the compressed air system that are specifically designed to remove water or moisture from the compressed air stream. They help ensure that the compressed air remains dry and free from excessive moisture, which can cause various issues in the system and downstream equipment.

The primary role of water separators in water-lubricated compressors is to separate and remove water that is present in the compressed air due to the compression process and condensation. Here’s how they accomplish this:

  1. Condensate Separation: During the compression of air, moisture present in the air is compressed along with the air molecules. As the compressed air cools down after the compression stage, the moisture condenses into liquid form. Water separators are designed to efficiently separate this condensate from the compressed air stream, preventing it from entering downstream equipment, pipelines, or end-use applications.
  2. Gravity and Centrifugal Separation: Water separators utilize various separation principles to separate the condensate from the compressed air. Gravity-based separators rely on the difference in density between the water droplets and the compressed air to allow the water to settle at the bottom of the separator, where it can be drained out. Centrifugal separators use centrifugal force to spin the air and water mixture, causing the water droplets to be thrown outwards and collected in a separate chamber.
  3. Coalescing and Filtration: Water separators often incorporate coalescing and filtration mechanisms to enhance their efficiency. Coalescing filters are used to capture and merge small water droplets into larger droplets, making it easier for the separator to separate them from the compressed air. Filtration elements, such as fine mesh or media, may be incorporated to remove any remaining water droplets or particulate matter that could potentially pass through the separator.
  4. Automatic Drainage: To ensure continuous and efficient operation, water separators are equipped with automatic drain valves. These valves periodically or on demand, expel the collected condensate from the separator. Automatic drainage prevents the accumulation of water in the separator, which can lead to reduced separation efficiency, increased pressure drop, and potential damage to downstream equipment.

By effectively removing water and moisture from the compressed air stream, water separators help prevent issues such as corrosion, clogging, freezing, and degradation of pneumatic equipment and processes. They contribute to maintaining the quality and reliability of the compressed air system while protecting downstream components and applications from the negative effects of moisture.

It is important to note that proper sizing, installation, and maintenance of water separators are essential to ensure their optimal performance. Regular inspection and maintenance of the separators, including draining the collected condensate, replacing filtration elements, and checking for any leaks or malfunctions, are necessary to ensure the efficient operation of water-lubricated compressors and the overall compressed air system.

air compressor

How Do You Troubleshoot Common Problems with Water-Lubrication Systems?

When encountering common problems with water-lubrication systems, it is essential to follow a systematic troubleshooting approach. Here’s a detailed explanation of the steps involved in troubleshooting common issues with water-lubrication systems:

Step 1: Identify the Problem:

The first step is to identify the specific problem or symptom that is affecting the water-lubrication system. Common problems may include inadequate lubrication, water leaks, abnormal noises, or reduced system performance. Understanding the specific issue will help in determining the appropriate troubleshooting steps.

Step 2: Check Water Supply:

Verify that there is a proper water supply to the system. Ensure that the water source is connected and flowing adequately. Check for any obstructions or restrictions in the water lines that may be affecting the water flow to the lubrication system.

Step 3: Inspect Water Filters and Strainers:

Water filters and strainers are used in water-lubrication systems to remove debris and impurities from the water. Inspect these filters and strainers for clogs or blockages that may be hindering the water flow. Clean or replace the filters as necessary to ensure proper water filtration.

Step 4: Verify Water Pressure:

Check the water pressure within the system to ensure it falls within the recommended range. Low water pressure can result in inadequate lubrication, while high water pressure can cause leaks or damage to the system. Use a pressure gauge to measure the water pressure and adjust it if necessary according to the manufacturer’s guidelines.

Step 5: Examine Water-Lubrication Components:

Closely inspect the various components of the water-lubrication system, including the water pump, distribution lines, lubrication points, and seals. Look for signs of wear, damage, or misalignment that may be contributing to the problem. Tighten loose connections and replace any damaged or worn-out components as needed.

Step 6: Check for Air in the System:

Air trapped within the water-lubrication system can affect its performance. Bleed the system to remove any trapped air. Follow the manufacturer’s instructions for bleeding air from the system, which typically involves opening specific valves or vents until a steady flow of water is achieved.

Step 7: Inspect Cooling Mechanisms:

Water-lubrication systems often incorporate cooling mechanisms, such as heat exchangers or radiators, to dissipate excess heat. Inspect these cooling components for blockages, corrosion, or leaks that may be compromising their effectiveness. Clean or repair the cooling mechanisms as necessary to ensure proper heat dissipation.

Step 8: Consult Manufacturer Documentation:

If the troubleshooting steps above do not resolve the problem, refer to the manufacturer’s documentation, such as the user manual or technical specifications. These resources may provide specific troubleshooting guidelines, diagnostics, or additional maintenance procedures for the water-lubrication system.

Step 9: Seek Professional Assistance:

If the problem persists or if the troubleshooting steps are beyond your expertise, it is advisable to seek professional assistance. Contact the manufacturer’s technical support or consult a qualified technician with experience in water-lubrication systems. They can provide expert guidance and assistance in resolving complex issues.

By following these troubleshooting steps, you can effectively identify and address common problems encountered in water-lubrication systems, ensuring optimal performance and reliability.

air compressor

Are Water Lubrication Air Compressors More Environmentally Friendly?

Water lubrication in air compressors offers several environmental benefits compared to traditional lubrication methods. Here are some reasons why water lubrication is considered more environmentally friendly:

  1. Non-toxic and biodegradable: Water is a natural substance that is non-toxic and biodegradable. It does not contain harmful chemicals or additives that can pollute the air or water systems. When water lubricants are used in air compressors, there is a reduced risk of environmental contamination.
  2. Reduced air pollution: Traditional lubricants, such as oils or synthetic lubricants, can release volatile organic compounds (VOCs) into the air during operation. VOCs contribute to air pollution and can have detrimental effects on human health and the environment. Water lubrication eliminates the release of VOCs, resulting in improved air quality and reduced air pollution.
  3. Minimized water pollution: Water lubrication does not introduce additional pollutants into water systems. Unlike oils or synthetic lubricants, water does not leave behind harmful residues or contaminants that can contaminate water sources. This helps to protect aquatic ecosystems and maintain water quality.
  4. Energy efficiency: Water lubrication can contribute to energy efficiency in air compressors. Water has excellent heat transfer properties, allowing for efficient dissipation of heat generated during compressor operation. By effectively managing heat, water lubrication helps to reduce energy consumption and improve overall compressor efficiency.
  5. Sustainable resource: Water is a renewable resource that is readily available in nature. Unlike oil or synthetic lubricants, which require extraction and processing, water can be sourced sustainably. This reduces the reliance on finite resources and promotes a more sustainable approach to lubrication in air compressors.

Overall, water lubrication in air compressors is considered more environmentally friendly due to its non-toxic nature, reduced air and water pollution, energy efficiency, and sustainable resource usage.

China high quality Customized Reciprocating Piston Oil-Less/Oil-Free Natural Gas Compressor High Pressure Air Compressor, Special Gas Compressors Such as Hydrogen/Nitrogen/Bog.   with Great qualityChina high quality Customized Reciprocating Piston Oil-Less/Oil-Free Natural Gas Compressor High Pressure Air Compressor, Special Gas Compressors Such as Hydrogen/Nitrogen/Bog.   with Great quality
editor by CX 2024-02-04

China Best Sales 15.9m3/Min Air Compressor Natural Gas Compressor, Reciprocating Piston Type Oil-Free, Water-Cooled, Also Nitrogen/Ammonia/Hydrogen/Biogas/Syngas Compressor air compressor portable

Product Description

Reference Technical parameters and specifications

NO. MODEL Compressed medium Flow rate
Nm³/h
Inlet pressure
MPa
Outlet pressure
MPa
Rotating speed
r/min
Motor power
KW
Cooling mode Overall dimension
mm
Weight
Kg
1 DW-14/(0-0.2)-25 Raw gas 800 0-0.02 2.5 740 160 Water cooled 4800*3200*1915 ~10000
2 VW-8/18 Vinylidene fluoride gas 418 Atmospheric pressure 1.8 980 75 Water cooled 3700*2000*1700 ~4500
3 VWD-3.2/(0-0.2)-40 Biogas 230 0-0.2 4.0 740 45 Water cooled 6000*2500*2650 ~8000
4 VW-9/6 Ethyl chloride gas 470 Atmospheric pressure 0.6 980 55 Water cooled 2800*1720*1700 ~3500
5 DWF-12.4/(9-12)-14 Carbon dioxide 6400 0.9-1.2 1.4 740 185 Air cooled 6000*2700*2200 ~10000
6 VWF-2.86/5-16 Nitrogen gas 895 0.5 1.6 740 55 Air cooled 3200*2200*1750 ~3500
7 DW-2.4/(18-25)-50 Raw gas 2900 1.8-2.5 5.0 980 160 Water cooled 4300*3000*1540 ~4500
8 VW-5.6/(0-6)-6 Isobutylene gas 1650 0-0.6 0.6 740 45 Water cooled 2900X1900X1600 ~3500
9 VW-3.8/3.5 Mixed gas 200 Atmospheric pressure 0.35 980 18.5 Water cooled 2200*1945*1600 ~2000
10 ZW-1.7/3.5 Vinyl chloride gas  100 Atmospheric pressure 0.35 740 15 Water cooled 2700X1600X2068 ~2000
11 ZWF-0.96/5 Hydrogen chloride gas 55 Atmospheric pressure 0.5 740 11 Air cooled 2000*1500*2000 ~1000
12 VW-0.85/(0-14)-40  Refrigerant gas 300 0-1.4 4.0 740 55 Water cooled 4500*2300*1780 ~5500
13 DW-3.78/(8-13)-(16-24) Ammonia gas 2700 0.8-1.3 1.6-2.4 740 75 Water cooled 3200*2000*1700 ~3500

 

Warranty: 12 Months
Lubrication Style: Customized
Cooling System: Air/Water /Mixed Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Customized
Structure Type: Open Type
Customization:
Available

|

air compressor

What Are the Key Components of a Water-Lubrication System in Compressors?

A water-lubrication system in compressors typically consists of several key components that work together to provide lubrication and cooling to the compressor. Here’s a detailed explanation of the key components of a water-lubrication system in compressors:

Water Supply:

  • Water Source: The water-lubrication system requires a water source that provides clean and suitable water for lubrication. The water can be sourced from various places such as municipal water supply, well water, or treated water from a dedicated water treatment system.
  • Water Inlet: The water inlet is the entry point where water enters the compressor’s lubrication system. It may include valves, filters, or other components to regulate and control the water flow.

Lubrication System:

  • Water Jackets: Water jackets are channels or passages built into the compressor’s housing or cylinder walls. These jackets allow water to circulate and come into direct contact with the compressor’s moving parts, providing lubrication and cooling. The water jackets help dissipate heat generated during compression and prevent excessive temperatures that could damage the compressor.
  • Water Pump: The water pump is responsible for circulating water through the water jackets and the entire lubrication system. It provides the necessary pressure to ensure adequate water flow and distribution to the compressor’s components.
  • Flow Control Devices: Flow control devices, such as valves or flow restrictors, are often included in the water-lubrication system to regulate and control the water flow rate. These devices help maintain optimal water pressure and flow throughout the system, ensuring effective lubrication and cooling.
  • Water Filters: Water filters are used to remove impurities, sediment, or debris from the water before it enters the lubrication system. They help prevent blockages, protect the compressor’s components from damage, and maintain the quality of the water used for lubrication.
  • Water Separator: A water separator is a component that removes excess water, moisture, or condensate from the compressed air. It ensures that the compressed air leaving the compressor is dry and free from excess water content, preventing potential issues such as corrosion or contamination downstream.

Control and Monitoring:

  • Temperature Sensors: Temperature sensors are used to monitor the temperature of the water and the compressor components. They provide feedback to the control system, allowing for adjustments in water flow or cooling measures if required to maintain optimal operating conditions.
  • Pressure Sensors: Pressure sensors are employed to monitor the water pressure within the lubrication system. They help ensure that the water flow and pressure are within the desired range, allowing for proper lubrication and cooling of the compressor.
  • Control System: A control system, which may include a combination of sensors, valves, and controllers, is responsible for regulating and maintaining the operation of the water-lubrication system. It can monitor various parameters, such as temperature, pressure, and flow, and make adjustments as needed to ensure efficient and safe operation.

Regular maintenance, inspection, and monitoring of the key components of the water-lubrication system are essential to ensure its proper functioning and to prevent any issues that could affect the performance and longevity of the compressor.

air compressor

Are There Any Restrictions on the Type of Water Used in Water-Lubricated Compressors?

When it comes to water-lubricated compressors, there are certain restrictions and considerations regarding the type of water that can be used. Here’s a detailed explanation of the restrictions on the type of water used in water-lubricated compressors:

Water Quality:

  • Cleanliness: The water used in water-lubricated compressors should be clean and free from excessive impurities or contaminants. Impurities like sediment, minerals, or debris can cause blockages, wear, or damage to the compressor components. It is important to use water that meets the cleanliness requirements specified by the manufacturer.
  • Chemical Composition: The chemical composition of the water can also be a factor to consider. Water with high mineral content or hardness can lead to scale formation, which can affect the performance and lifespan of the compressor. Water treatment methods, such as water softening or filtration, may be necessary to maintain the desired water quality.

Water Temperature:

  • Freezing Point: In cold climates, it is important to ensure that the water used in the compressor’s lubrication system does not freeze. Freezing can cause operational issues and damage to the equipment. The water temperature should be maintained above freezing point through insulation, heating, or other suitable methods.
  • Temperature Range: Water-lubricated compressors may have specific temperature requirements to ensure optimal operation and lubrication. Operating the compressor with water temperatures outside the recommended range can affect its performance and lifespan. It is important to adhere to the manufacturer’s guidelines regarding the acceptable temperature range for the water used.

Water Treatment:

  • Water Treatment Systems: Depending on the quality of the available water supply, it may be necessary to use water treatment systems to ensure the water meets the required standards. Water treatment systems can help remove impurities, control chemical composition, and maintain the desired water quality for effective lubrication and cooling.
  • Water Treatment Frequency: Regular maintenance and monitoring of the water treatment systems are essential to ensure their effectiveness. The frequency of water treatment, such as filtration or chemical treatment, may vary depending on the specific conditions and the water quality in the area.

Manufacturer Recommendations:

  • Consulting the Manufacturer: It is important to consult the manufacturer’s guidelines and recommendations regarding the type of water to be used in water-lubricated compressors. Manufacturers may specify the acceptable water quality parameters, treatment methods, or restrictions to ensure optimal performance and longevity of the compressor.

By considering the cleanliness, chemical composition, temperature, and appropriate water treatment measures, the type of water used in water-lubricated compressors can be optimized to meet the requirements specified by the manufacturer. Adhering to these restrictions helps ensure efficient and reliable operation of the compressor while minimizing the risk of component damage or performance issues.

air compressor

What Maintenance Is Required for Water-Lubricated Air Compressors?

Maintaining water-lubricated air compressors involves several key maintenance tasks to ensure their optimal performance and longevity. Here are the maintenance requirements typically associated with water-lubricated air compressors:

  1. Regular water quality checks: It is essential to monitor the quality of the water used for lubrication in the compressor. Regular water analysis helps identify any potential contaminants, such as minerals or impurities, that may affect compressor performance or lead to corrosion. If necessary, appropriate water treatment measures should be taken to maintain the desired water quality.
  2. Drain and flush water systems: Periodically draining and flushing the water systems of the compressor helps remove any sediment, debris, or accumulated contaminants. This prevents blockages, maintains water flow, and ensures the cleanliness of the system.
  3. Inspect and clean filters: Filters in the water system, such as intake filters or water separation filters, should be inspected regularly and cleaned or replaced as needed. Clean filters help maintain proper water flow, prevent clogging, and protect internal components from damage or corrosion.
  4. Check for leaks: Regularly inspect the compressor system for any signs of water leaks. Leaks can lead to water loss, reduced lubrication performance, and potential damage to the compressor components. Any identified leaks should be promptly repaired to maintain the integrity of the system.
  5. Monitor and maintain proper water levels: Ensure that the water levels in the compressor are maintained within the recommended range. Low water levels can result in inadequate lubrication and increased friction, while high water levels may lead to excessive moisture in the system. Regularly check and adjust the water levels as necessary.
  6. Inspect and maintain cooling systems: Water-lubricated compressors often utilize water for cooling purposes. Inspect and maintain the cooling systems, such as heat exchangers or radiators, to ensure proper heat dissipation. Clean any accumulated debris or deposits that may impede cooling efficiency.
  7. Follow manufacturer guidelines: It is crucial to follow the manufacturer’s maintenance guidelines and recommendations specific to the water-lubricated air compressor model being used. These guidelines may include additional maintenance tasks or intervals that are necessary for optimal performance and warranty compliance.

Regular and proactive maintenance of water-lubricated air compressors helps ensure their reliable operation, extends their lifespan, and minimizes the risk of performance issues or component failures. It is advisable to consult the compressor’s documentation and seek guidance from the manufacturer or a qualified technician to establish a comprehensive maintenance routine specific to the equipment.

China Best Sales 15.9m3/Min Air Compressor Natural Gas Compressor, Reciprocating Piston Type Oil-Free, Water-Cooled, Also Nitrogen/Ammonia/Hydrogen/Biogas/Syngas Compressor   air compressor portableChina Best Sales 15.9m3/Min Air Compressor Natural Gas Compressor, Reciprocating Piston Type Oil-Free, Water-Cooled, Also Nitrogen/Ammonia/Hydrogen/Biogas/Syngas Compressor   air compressor portable
editor by CX 2023-11-21